Structural foetal evaluation
Including foetal echocardiography & foetal neurosonography

This protocol is a translation with some modifications of a protocol developed in the University Medical Centre, Utrecht, together with its satellite ultrasound clinics between 2010 and 2013, and adapted for use in South Africa. It is a guide to common conditions, not a foetal medicine textbook. Although it has been scrutinized by different professionals, please use this with discretion and let us know if you find any inaccuracies, discrepancies or new insights.

Lou Pistorius lou@maternalfetal.co.za

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation</td>
<td>2</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>3</td>
</tr>
<tr>
<td>Spine</td>
<td>5</td>
</tr>
<tr>
<td>Face</td>
<td>8</td>
</tr>
<tr>
<td>Thorax</td>
<td>11</td>
</tr>
<tr>
<td>Lungs</td>
<td>11</td>
</tr>
<tr>
<td>Heart</td>
<td>12</td>
</tr>
<tr>
<td>General</td>
<td>12</td>
</tr>
<tr>
<td>Technical</td>
<td>12</td>
</tr>
<tr>
<td>Outflow tracts heart (with colour doppler)</td>
<td>13</td>
</tr>
<tr>
<td>Diaphragmatic hernia</td>
<td>18</td>
</tr>
<tr>
<td>Abdomen</td>
<td>19</td>
</tr>
<tr>
<td>Kidneys</td>
<td>20</td>
</tr>
<tr>
<td>Skeleton and limbs</td>
<td>21</td>
</tr>
<tr>
<td>Monochorionic twins</td>
<td>23</td>
</tr>
<tr>
<td>Foetal hydrops</td>
<td>24</td>
</tr>
<tr>
<td>Polyhydramnios</td>
<td>25</td>
</tr>
<tr>
<td>Soft markers</td>
<td>26</td>
</tr>
<tr>
<td>Chromosomal abnormalities at prenatal ultrasound abnormalities</td>
<td>28</td>
</tr>
</tbody>
</table>
Orientation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **Orientation** | • Number & position of foetuses
• Foetal heart activity
• Foetal movements
• Amniotic fluid
• Placental position
• Cord insertion
• Umbilical vessels |

Central nervous system

Axial:

a) Transventricular
 - Evaluation:
 - Skull oval shape
 - Symmetrical midline echo
 - Falx central
 - Cavum septum pellucidum 1/3 from front (always visible 16–37w)
 - Anterior & poster horns lateral ventricles
 - Measurements:
 - Head Circumference (HC): ellipse on outside of skull (excluding soft tissue) (Chitty curves)
 - Ventricular atrium in distal hemisphere (<10mm)

b) Transthalamic
 - Additional evaluation:
 - Thalami
 - Hippocampal gyrus

c) Transcerebellar
 - Additional evaluation:
 - Cerebellar hemispheres & vermis
 - Measurements:
 - Transverse cerebellar diameter
 - Cisterna magna (2-10mm)

Measurement ventricular atrium
Coronal (a-c via ant fontanel)

a Transfrontal
 o Interhemispheric fissure
 o Frontal lobe cortex anterior to ventricles
 o Orbitae
 o Sphenoid

b Transcaudate
 o Genu corpus callosum
 o Cavum septi pellucidi
 o Anterior horn lateral ventricles
 o Nucleus caudatus
 o Sulcus Sylvius

c Transthalamic
 o Thalami
 o Thirde ventricle
 o Atrium lateral ventricle met choroid plexus

d Transcerebellar (via post fontanel)
 o Achterhoorn lateral ventricles
 o Tentorium
 o Cerebellum hemispheren & vermis

Sagittal

a Mid sagittal
 o Corpus callosum
 o Cavum septi pellucidi
 o Brain stem, pons
 o 4th ventricle
 o Vermis

b Parasagittal
 o Lateral ventricle
 o Choroid plexus
 o Periventricular weefsel
 o Cortex
Spine

Axial plane cranial to transventricular plane for evaluation cortical development

Sagittal till sacrum; skin intact
Coronal if risk skeletal abnormality (hemivertebrae)

In case of spina bifida:
Look for associated abnormalities.
Consider karyotyping; especially in presence of associated abnormality (5% chromosomal abnormality).

Highest lesion document with lowest rib visible
(quote height as lowest intact vertebra)

Encephalocele
Prognosis depends on:
- content (e.g. ventricle / nothing), asymmetry
- Associated malformation (present in 40% aanwezig) (e.g chromosomal, Meckel Gruber: occipital encephalocele, renal dysplasia, postaxial polydactily)

Ventriculomegaly
Ventriculomegaly is a description, geen diagnosis; try to get to a differential / working diagnosis.

Diagnosis van ventriculomegaly:
- Measurement ventricular atrium; >10mm = ventriculomegaly
 - Remember:
 - 10mm = 4 standard deviations above mean
 - Proximal hemisphere not (always) well visible
 - Boys have bigger ventricles than girls
 - Isolated ventriculomegaly:
- 11-12mm (mild ventriculomegaly): Prognosis good (98% survival, of whom >90% normal development)
- 13-15mm (moderate ventriculomegaly): 80% survival of whom 75% normal development
- > 15mm (severe ventriculomegaly): 33% survival of whom 60% normal neurological development
 - Good prognosis: boy, ventricle size normalizes
- Associated signs:
 - "Dangling" of choroid plexus (> 3mm between choroid plexus and medial ventricle wall)
 - Hydrocephalus = combination obstruction & increased intracranial pressure (increased HC & PI mca)

Differential diagnosis:
- Impaired cerebrospinal fluid circulation:
 - Abnormal posterior fossa:
 - Chiari malformation (neural tube defect)
 - Persisting Blake’s pouch (large cisterna magna)
 - Dandy-Walker malformation (high tentorium – evaluate sagittal / coronal & 3D)
 - Bleeding (clot visible in ventricle, ventricle wall echogenic, often asymmetrical)
 - Aqueduct stenosis (small 4th ventricle) (diagnosis at exclusion)
- Ex vacuo ventriculomegaly:
 - Corpus callosum agenesis (colpocephaly, midsagittal complete / partial agenesis, Doppler evaluation of pericallosal arteries)
 - Infection (CMV: periventricular echogenicity with/ without cysts; echogenicities in parenchyma, intraventricular adhesions, abnormal gyral development, cerebellar hypoplasia & echogenicities)
 - Lissencephaly
- Other
 - Holoprosencephaly
 - Porencephaly / schizencephaly
 - Hidranencephaly

Thus in case of ventriculomegaly:
- Look for extracranial abnormalities (present in 1/3; regardless of degree of ventriculomegaly); complete neurosonography
- Karyotype (risk chromosomal abnormality 2% in case of mild ventriculomegaly or LR 7.9, 10% in moderate / severe vm)
- TORCH, Parvo if suspicion according to history / imaging
- Screening anti-thrombocyte antibodies if bleeding suspected
- Consider MRI.
- Follow-up: repeat US after 2w; if stable, repeat /2w from 30w. At repeat US: measure atrium, HC, mca Vmax & PI, (sup sagit sinus (abnormal indien pulsations disappear; PI < 0.1)
- Consider delivery if dramatic increase ventriculomegaly or abnormal Dopplers

Holoprosencephaly
Types:
- alobar: no midline
- semi-lobar: partial fusion thalami
- lobar: absent csp

Causes:
- monogenic: syndromal / non-syndromal
- chromosomal 25-50% (trisomy 13, 18, triploidy)
- teratogens (diabetes, alcohol)

Recurrence 10% (highest of all intracranial abnormalities)
Genetic counselling important.
Posterior fossa abnormalities

Characteristics of normal posterior fossa:

- Cisterna magna ≤ 10 mm
- TCD normal for gestational age
- Normal cerebellar anatomy:
 - Vermis + hemispheres
 - No communication between 4th ventricle & cisterna magna

Differential diagnosis in case of increase fluid cisterna magna:

- Tentorium high (NB sagittal view & 3D!)
 - Dandy-Walker malformation: triad of large posterior fossa, raised tentorium, complete / partial aplasia vermis & cystic dilation 4th ventricle
- Tentorium normal:
 - Normal anatomy & biometry cerebellum and vermis:
 - Hydrocephaly; rotation vermis
 - DD megacisterna magna, arachnoid cyst, persisting Blake’s pouch (see article Volpe; measure angle between vermis & brain stem)
 - Normal anatomy, biometry abnormal:
 - Generally small: cerebellar / pontocerebellar hypoplasia
 - Focally small: dysplasia / ischemia / bleeding
 - Anatomy abnormal:
 - Complete / partial vermis aplasia
 - Rhombencephalosynapsis

In case of cerebellar abnormalities & hydrocephaly: beware of lissencephaly!

Measure brainstem-vermis (1) & brainstem-tentorium (2) angle:
Face

<table>
<thead>
<tr>
<th>Sagittal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile – note forehead, nasal bone, maxilla, upper & lower lip, tongue, mandible. Corpus callosum and vermis visible if midsagittal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coronal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Orbitae + lenses</td>
</tr>
<tr>
<td>- Nostrils</td>
</tr>
<tr>
<td>- Upper lip</td>
</tr>
</tbody>
</table>
Facial lines & angles:
Frontal bone in line or slightly (<3.6mm after 27w) in front of facial profile line (through nasion & anterior border mandible)
MNM angle (other line: front of maxilla & nasion) 10 – 17°

Cleft:
- Most important question: associated abnormalities? (present in about 50%)
- Cleft:
 - Uni / bilateral?
 - Lip / jaw / palate? (more nasal deviation if cleft jaw & palate)
- Risk of chromosomal abnormality:
 - No other abnormalities: 1-2% (especially if bilateral & palate; esp. 22q11 & trisomy 21)
 - Other abnormalities: 50% (especially trisomy 18, 13, 21)
- 3D images:
 - Start: head extended, scan from below (avoid shadow from palate & maxilla)
 - Rotate to standard (A=coronal, B=sagittal, C=axial)
<table>
<thead>
<tr>
<th>Render left to right for profile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Render down to up for palate</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Thorax

Sagittal:
- Shape thorax
- Echogenicity lungs
- Diaphragm (sagittal); heart above, stomach below

If possible skeletal abnormality:
- Measure thorax circumference (TC) (axial)
- (Scapulae length measure)
- (Claviculae length measure)
- Shape (& number) ribs

Lungs

Echogenic lesion:
- CHAOS (congenital high airway obstruction) – bilateral echogenic lungs, low diaphragm, poor prognosis
- Tracheal / bronchial obstruction – can be transient
- CPAM: microcystic / macrocystic / mixed
 - Antenatal progress:
 - 20% smaller
 - 40% unchanged
 - 10% bigger; mediastinal shift with risk of polyhydramnios, pulmonary hypoplasia, hydrops
 - Therefore US every 4 weeks; earlier if symptomatic
 - Aspiration macrocysts can be considered if complications arise
- Pulmonary sequester
 - Appearance like microcystic CPAM, but blood supply from aorta
 - Intra / extralobular; above or below diaphragm
 - Risk of cardiac decompensation (recirculation blood aorta – sequester – pulmonary veins – left atrium & ventricle)
 - Therefore US every 2 weeks with attention left ventricular function

Pulmonary agenesis:
- Mediastinal shift
- Usually small residual lung volume
- Beware of scimitar syndrome (together with partial anomalous pulmonary venous circulation) if agenesis right lung, therefore always foetal echocardiography
Heart

General
Prevalence congenital cardiac abnormality around 8:1000 liveborn. 80% multifactorial origin.

Technical
- Motion-mode (M-mode):
 - foetal heart rhythm
 - wall thickness

<table>
<thead>
<tr>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>through atrium and ventricle for temporal relationship</td>
</tr>
<tr>
<td>through both ventricles to measure walls</td>
</tr>
<tr>
<td>peed 60/30</td>
</tr>
<tr>
<td>heart rate over 4 cycles</td>
</tr>
</tbody>
</table>

- Pulsed wave doppler:
 - Flow rate over valves and through large vessels
- Colour Doppler:
 - patency cardiac connections
 - direction blood flow
 - detection ventricular septal defect
 - evaluation of turbulence and insufficiency

<table>
<thead>
<tr>
<th>Abdomen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foetal position</td>
</tr>
<tr>
<td>Stomach left</td>
</tr>
<tr>
<td>Aorta anterior and left to spine</td>
</tr>
<tr>
<td>Vein cava inferior right of spine and anterior to the aorta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart:thorax area ratio normal 1:3</td>
</tr>
</tbody>
</table>
Position (heart axis)
- Angle between:
 - Line from spine to sternum
 - Line through ventricle septum
 - angle is $45^\circ \pm 15^\circ$
- 1st line through left atrium and right ventricle

4-chamber image
- Symmetry ventricles and atria
- Right ventricle moderator band
- Crux: septal insertion tricuspid valve more apical
- Crux: septum primum of atrial septum present
- AV-valves & connections

Interventricular septum
- Patency foramen ovale
- Valve foramen ovale opens into left atrium
- AV-valves & connections
- Pulmonary veins drain into left atrium (low PRF)

Outflow tracts heart (with colour doppler)

- Watch out for drop out phenomenon (apical approach); lateral approach preferable
- Evaluate with flow (low PRF)
Crossing great vessels
- Aorta and pulmonary artery crossing
Additional:
- Splitting pulmonary artery

Three vessel view
- Equal diameter van pulmonary artery and aorta
- Flow direction similar

Moving clip of about 10 seconds with 4-chamber view & outflow tracts

Aortic & ductal arch
- Coarctatio?
Long and short axis
- Front wall aortic root continuous with ventricle septum
- Mitral valve continuous with aorta

Short axis & left chamber
- Apple (left chamber) and pear (right chamber)
- Also with flow

Vein cava inferior and superior
- In sagittal plane

Cardial measurements (on indication):

<table>
<thead>
<tr>
<th>Atria</th>
</tr>
</thead>
<tbody>
<tr>
<td>• End systolic (ventricle systole)</td>
</tr>
<tr>
<td>• In 4-chamber image: transverse measurement from lateral atrial wall to imaginary line between two parts atrial septum (foramen ovale)</td>
</tr>
</tbody>
</table>
Ventricles
- End diastolic
- Transverse: in 4-chamber image, directly below closed valve leaflets
- Length: in 4-chamber image, from apex of ventricle to tip of closed valve leaflets

Interventricular septum
- End diastolic
- In 4-chamber image: directly below off-set of closed valve leaflets

Thickness ventricle wall
- End diastolic
- In 4-chamber image: directly below off-set of closed valve leaflets

Aorta
- End systolic (ventricle systole)
- Short-axis image
- Aorta ascendens directly above sinuses of Valsalva
- Aorta descendens (isthmus) between branch of a subclavia sinistra and connection ductus arteriosus

Pulmonary artery
- End systolic (ventricle systole)
- Short-axis image
- Sinotubular junction

In case of abnormality:
- Discuss karyotyping; remember 22q11 deletion. Karyotyping strongly recommended in case of AVSD, conotruncal abnormalities or associated abnormalities (e.g., thick nuchal fold or hydrops, radius/thumb/other skeletal abnormalities).
- Cardiac abnormalities commonly occurring in case of 22q11 deletion: tetralogy of Fallot, pulmonary atresia, truncus arteriosus and interrupted aortic arch
Diaphragmatic hernia

General:
- US image usually abnormal position heart, stomach sometimes visible above diaphragm, position of liver confirm with colour Doppler (sagittal / coronal planes)
- Dd cpam, bronchial or laryngeal atresia, intralobular pulmonary sequester, teratoma
- Look for other abnormalities: 50% associated chromosomal, structural or genetic abnormalities: esp. trisomy 13 & 18, mosaic tetrasomy 12p, therefore always karyotyping)
- Prognosis: 50% survival if isolated diaphragmatic hernia (i.e. 25% survival at diagnosis); improves to 65% if live born
- Worse prognosis: right sided hernia, liver in thorax, small lung-head ratio (LHR) (to calculate: area **contralateral** lung on 4-chamber view in mm⁴ / HC in mm) – see http://www.totaltrial.eu/?id=6
- Prediction prognosis:
 - O/E LHR ≥ 25% survival > 60%
 - O/E LHR 15-25% survival 15%
 - O/E LHR < 15% survival unlikely
Abdomen

<table>
<thead>
<tr>
<th>Abdominal Circumference (AC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Axial plane</td>
</tr>
<tr>
<td>• Umbilical vein visible 1/3 from anterior abdominal wall</td>
</tr>
<tr>
<td>• Stomach visible</td>
</tr>
<tr>
<td>• Measurement: ellipse around outside diameter (including soft tissue)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation abdominal wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Stomach & bladder filling</td>
</tr>
<tr>
<td>• Bowel</td>
</tr>
<tr>
<td>• Both kidneys, evaluation of echodensity & measurement of pyela if subjectively wide in anterior-posterior diameter:</td>
</tr>
<tr>
<td>- 20w: < 5mm = normal</td>
</tr>
<tr>
<td>- 30w: < 10mm = normal</td>
</tr>
</tbody>
</table>

| Coronal/ sagittal (on indication): |
| measurement length (without adrenal) |

<table>
<thead>
<tr>
<th>Umbilical arteries</th>
</tr>
</thead>
</table>
Kidneys

Pyelectasis:
- pyelum 5-10mm at 20w
 - check for indications of hydronephrosis (dilated ureters and/or calyces), oligohydramnion, thick-walled bladder of increased echodensity kidneys
 - dd double system
 - repeat scan at 32w
- pyelum >10mm at 32w:
 - pyelum 10-15mm:
 - no dilated calyces, echodensity or small cysts (high frequency scanning), normal amniotic fluid, normal bladder: repeat scan after 4w.
 - Dilated ureter; start Monotrim 0.2 ml/kg of 10 mg/ml solution (i.e. 2 mg/kg) daily after delivery. Renal ultrasound d3-10 post partum.
 - Pyelum > 15 mm individualize.

First trimester megacystis
- 7-15 mm length:
 - 20% chance chromosomal abnormalities (esp. trisomy 13, 18)
 - If no chromosomal abnormality, 90% resolution megacystis
- > 15mm:
 - 10% chance chromosomal abnormalities
 - If no chromosomal abnormality, always obstructive uropathy

MCKD:
- unilateral; scan 30 and 34 wk to check healthy kidney
- bilateral: lethal

Polycystic kidneys:
- bilateral, kidneys enlarged; small cysts (echogenic kidneys)
- family history & scan parents?

LUTO (Lower urinary tract obstruction):
- thick-walled bladder, bilateral hydronephrosis & megaureter
- dd megacystis megacolon intestinal hypomotility syndrome (dilated urinary tracts & bowel)
- discuss stent

Omphalocoele
- Prevalence 3-10:10.000
- Physiologic until 11w3d
- Associated abnormalities:
 - cardiac 50%
 - limbs 30%
 - chromosomal 25% (40% @12w, 28% @20w, 15% @40w)
 - polyhydramnion 30%
 - Beckwith-Wiedeman (macrosomia, macroglossia, polycystic kidneys)
- Always: karyotyping and echocardiography

Gastroschisis
- Prevalence 2-4:10.000
- No increased risk of chromosomal abnormalities
- Increased risk of:
 - Bowel complications 10-20%
 - IUGR
 - IUD / foetal distress
 - iatrogenic / spontaneous premature labour
- Mean gestation at delivery 36-37 weeks
- Neonatal survival 90-95%
Skeleton and limbs

Femur length (FL)
- Skin thigh parallel to femur
- Measure only bony part of diaphysis without cartilage of epiphysis

Limbs
- Upper and lower limbs; 4 x 3 bones
 - Presence & position hands and feet
 - Stand handen and voeten
 - Fingers count (picture with fingers stretched or in neutral position)

If risk skeletal abnormality:
- Also measure humerus, radius, ulna, tibia, fibula & foot length
- Measure both left & right if visually suspicious of different length
- Count toes

Extended evaluation skeleton

When?
Family history skeletal problem
Abnormal findings:
- Abnormal shape skull
- Club foot (feet)
- Short femur
- Bowed femur, decreased ossification, fractures
- Abnormal ossification

Missing bones

As above (including “at risk”) and additionally:
Thorough search for possible associated abnormalities (esp. renal (cysts?), cardiac, CNS, genitalia

Vertebral column
Coronal evaluation to exclude hemivertebrae
3D / 4D (skeletal rendering; High 2; 55°)

Face
Cataracts?
Measure BiOD and IOD (binocular & interocular diameter)
Profile with 3D / 4D (multiplane, High 2, 55°), note forehead, mandibula, facial angle
<table>
<thead>
<tr>
<th>Thorax</th>
<th>Placental insufficiency?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement thorax circumference (TC)</td>
<td>Doppler a. umb / a. uterina to exclude (severe) growth restriction due to placentar insufficiency</td>
</tr>
<tr>
<td>Shape sagittal (bell-shaped)</td>
<td></td>
</tr>
<tr>
<td>Claviculae:</td>
<td></td>
</tr>
<tr>
<td>Present? Ossification? Measure length</td>
<td></td>
</tr>
<tr>
<td>Scapulae:</td>
<td></td>
</tr>
<tr>
<td>Shape? Measure length</td>
<td></td>
</tr>
<tr>
<td>Ribben:</td>
<td></td>
</tr>
<tr>
<td>Number? (difficult, try 3D / 4D skelet settings)</td>
<td></td>
</tr>
<tr>
<td>Fractures / ossification, shape</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- TC: AC < 0.6 and FL:AC < 0.16 indicative of lethal abnormality
- Beware of population and individual variation, incorrect gestational age
- Beware of chromosomal abnormalities if short bones (see soft marker protocol)
- If club feet and no other abnormalities (including position conus medullaris low risk of chromosomal abnormality
Monochorionic twins

12 weeks
- NT measurement even if no desire for Down screening
 - If NT discrepancy < 20% risk of complications such as TTTS < 10%
 - If NT discrepancy > 20% risk of complications such as TTTS > 30%

From 14 weeks
2-weekly US with evaluation of:
- Biometry, lie
- Amniotic fluid: deepest pocket
- Bladder filling
- Doppler PI umbilical artery, check for at least 30 sec for intermittent absent/reverse flow
- From 26 weeks also vmax arteria cerebri media to exclude TAPS (twin anemia-polycythemia sequence)
- Consult if abnormalities or growth discordance > 20%

20 weeks
- Anatomical evaluation including echocardiography & neurosonography
- Cord insertions and distance between cord insertions
- Check 1st trimester pictures, gender

30 weeks
- Anatomical evaluation including echocardiography & neurosonography

Twin to twin transfusion syndrome (TTTS):

<table>
<thead>
<tr>
<th>Quintero stage</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Polyhydramnion, deepest vertical pocket (DVP) > 80 mm and oligohydramnion, DVP < 20 mm, without additional abnormalities</td>
<td>Follow closely, depending on size / dopplers etc 2x /w</td>
</tr>
<tr>
<td>II. Additional empty bladder donor</td>
<td>Laser</td>
</tr>
<tr>
<td>III. AERDV in umbilical artery, reverse flow ductus venosus or pulsatile flow in umbilical vein</td>
<td>Emergency laser</td>
</tr>
<tr>
<td>IV. At least 1 foetus hydropic</td>
<td></td>
</tr>
<tr>
<td>V. At least 1 IUD</td>
<td>Neurosonography, MRI</td>
</tr>
</tbody>
</table>

Acardiac / TRAP syndrome

2 management strategies: all obliteration at 16 weeks (50% overtreatment) or watchful expectancy

Look for poor prognostic factors:
- Acardiac weight (volume per 3D) > 70% of pump twin or snell growth acardiac
- Signs of decompensation (abnormal ductus venosus, pulsational flow umbilical vein; tricuspid insufficiency)
- Polyhydramnion
- Acardiac anceps (arms present)
- Ratio diameter umbilical vein pump twin : acardiac
- High Vmax umbilical vein of pump twin and acardiac

Follow up:
- US /2w with evaluation poor prognostic factors
- Poor prognostic factors present, obliteration cord acardiac
Foetal hydrops

Definition
Fluid collection in more than one foetal compartment (including amniotic fluid)

Causes
- Haemolytic anemia due to anti-erythrocyte antibodies
- Cardiovascular: * anatomical abnormalities (e.g. Ebstein anomaly)
 * tachy- of bradycardia
 * cardiomyopathy or myocarditis
 * intracardiac tumors (tuberous sclerosis)
- Chromosomal: * Trisomy 21 or other trisomies
 * Turner syndrome
 * Triploidy
- Infections:
 * Parvo B19
 * CMV
 * toxoplasmosis
- Anaemie foetus due to α-thalassemia
- Pulmonary:
 * CPAM
 * diaphragmatic hernia
 * extralobar pulmonary sequester
 * congenital hydro- or chylothorax
- Placenta and cord:
 * chorangioma
 * foeto-maternal transfusion
- TTTS
- Cystic hygroma with or without aneuploidy
- Metabolic disturbances, esp consanguinous relationships
- Noonan syndrome
- Sacrococcygeal teratoma

Diagnosis
- Blood group, rhesus and irregular antibodies
- Kleihauer
- Hb-electrophoresis if possible thalassemia
- Infection serology: Parvo B19, CMV, toxoplasmosis
- Detailed US including echocardiography
- Dopplers: a umbilicalis, a cerebri media with Vmax, ductus venosus, v umbilicalis
- Amniocentese for karyotyping (qfPCR) and PCR a verdening infection
- Refer to clinical geneticist

Treatment and Prognosis
- Intra-uterine transfusion if possible foetal anemia
- Poor prognosis if no treatable cause, better prognosis if disappears
Polyhydramnios

Definition:
- deepest pocket > 8cm, or
- AFI > 24cm or > p95

Risk of associated abnormalities:
- Develops during 2nd trimester: 50%
- Develops during 3rd trimester: no macrosomie: 30%
 Macrosomie presente: rare

Evaluation:
- Serology: TORCH, Parvo B19, irregular erythrocyte antibodies
- Detailed US, with attention to:
 - Heart
 - Face (cleft, retrognathia)
 - Limbs & movement
 - Club feet: poor prognosis (dd trisomy 18 / muscular dystrophy / SMA); evaluation parents for possibly muscular dystrophy (clinical genetics)
- If macrosomia: GTT
- If development in 2nd trimester; or 3rd trimester without macrosomia:
 - Foetal echocardiography
 - Karyotyping
 - Always if other abnormalities
 - 5% risk if no other abnormalities esp. trisomy 21/18
 - Postnatal evaluation paediatrician (dd tracheo-oesophageal fistula)
Soft markers

Definition:
- Non-specific, often transient incidental finding
- In itself no effect on pregnancy outcome
- More commonly seen in fetuses with chromosomal and other abnormalities

Soft markers:
Group 1: mainly associated with chromosomal abnormalities

<table>
<thead>
<tr>
<th>Echogenic focus (trisomy 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plexus cysts regardless of size; uni-of bilateral (trisomy 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Group 2: associated with chromosomal and other abnormalities

<table>
<thead>
<tr>
<th>Nuchal fold > 6mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Echogenic bowel grade III (more echogenic than bone with decreased gain)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mild ventriculomegaly (10-12mm atrium)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Group 3: mainly associated with non-chromosomal abnormalities

<table>
<thead>
<tr>
<th>Pyelectasis >5mm in anterior-posterior direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Single retrospective study:
- If PT:NB > 1.0, “all” trisomy 21
- If PT:NB < 0.8, “all” normal

Policy:
- 20 week scan is a poor screening method for chromosomal abnormalities
- Isolated choroid plexus cyst or single umbilical artery in the absence of other abnormalities: risk Down syndrome unchanged (LR=1)
- Others: offer risk calculation if wanted; given that compared to first trimester screen, second trimester risk evaluation is less well validated, lower sensitivity, higher false positive
- Isolated pyelectasis: see renal section
- Absence of soft markers reduces risk by about 60%

<table>
<thead>
<tr>
<th>Soft marker</th>
<th>Associated abnormalities</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuchal fold > 6mm LR = 17</td>
<td>Cardiac abnormalities, Infection, Genetic syndromes</td>
<td>Repeat echocardiography at 30 – 32w</td>
</tr>
<tr>
<td>Echogenic bowel LR = 6.1</td>
<td>Retroplacental bleeding, CMV infection, IUGR (also dopplers a. uterina), Bowel pathology, Cystic fibrosis</td>
<td>Genetical counseling CF, Repeat US at 26 weeks (growth & bowel)</td>
</tr>
<tr>
<td>Mild ventriculomegaly LR = 7.9</td>
<td>Impaired circulation CSF: abnormal posterior fossa, bleeding, aqueduct stenosis, Ex vacuo ventriculomegaly: corpus callosum agenesis, infection, lissencephaly</td>
<td>Verwijzing WKZ - zie artikel 2 protocol CZS</td>
</tr>
<tr>
<td>Femur < P3 LR = 2.7</td>
<td>Skeletal dysplasia, IUGR (also dopplers a. uterina)</td>
<td>Fetal growth</td>
</tr>
<tr>
<td>Echogenic focus LR = 2.4</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Plexus cysts LR = 1</td>
<td>Association met trisomy 18, LR = 7.1</td>
<td>None</td>
</tr>
<tr>
<td>SUA LR = 1</td>
<td>Cardiac abnormalities, Renal abnormalities, IUGR (also dopplers a. uterina)</td>
<td>Fetal growth</td>
</tr>
</tbody>
</table>
Chromosomal abnormalities at prenatal ultrasound abnormalities:

Important:

- Percentages are given as guide for counseling and do not replace genetic counseling
- Take into account:
 - Background risk, e.g. previous pregnancies, repeated miscarriages, subfertility, maternal (and paternal) age, first trimester screening
 - Family history: repeated miscarriages, stillbirth, mental retardation, consanguinity
 - Parental karyotyping higher resolution than prenatal karyotyping
 - Gestational age: higher percentage earlier in pregnancy due to spontaneous foetal demise
 - Explicitly discuss large chance of normal karyotyping
 - Discuss follow-up in case of abnormal finding (e.g. TOP / palliative care for lethal chromosomal abnormality); and normal chromosome: sometimes small residual risk (e.g. soft markers); sometimes genetical counseling very important (e.g. holoprosencephaly)
- Table only mentions most commonly occurring chromosomal abnormalities, no other syndromes / genetic mutations / teratogenic infections
- Array CGH abnormalities found in about 5% of fetuses with chromosomal abnormalities with normal classical karyotyping
- Where possible distinction between isolated finding, or finding in presence of other visible abnormalities

<table>
<thead>
<tr>
<th>US abnormality</th>
<th>Risk of chromosomal abnormality if isolated</th>
<th>Risk of chromosomal abnormality if isolated other abnormalities present on ultrasound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neural tube defect</td>
<td></td>
<td>Trisomy 13 & 18, triploidy, translocation</td>
</tr>
<tr>
<td>Ventriculomegaly</td>
<td>5%</td>
<td>2% if mild (10-12mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10% if >12mm</td>
</tr>
<tr>
<td>Holoprosencephaly</td>
<td>25-50%</td>
<td>trisomy 13, 18, triploidy</td>
</tr>
<tr>
<td>Corpus callosum agenesis</td>
<td>20%</td>
<td>trisomy 13, 18</td>
</tr>
<tr>
<td>Dandy-Walker malformation</td>
<td>15-30%</td>
<td>trisomy 9, 13, 18, 18, triploidy, deletions & duplications</td>
</tr>
<tr>
<td>Microcephaly</td>
<td>Trisomy 13, 18, 22, deletions (4p-, 5p- 18p-, 18q-)</td>
<td></td>
</tr>
<tr>
<td>Face:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleft</td>
<td>1-2%</td>
<td>65%</td>
</tr>
<tr>
<td></td>
<td>22q11</td>
<td>Trisomy 13, 18, 21; 4p, 4p-, 4q, 7q, 22q11</td>
</tr>
<tr>
<td>Thorax:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphragmatic hernia</td>
<td>10-20%</td>
<td>trisomy 18, 13, 21 also 4p-, 15q-, tetrasomy 12p (Pallister Kilian, only in amniotic fluid, not in blood or chorionic villi)</td>
</tr>
<tr>
<td>CPAM</td>
<td>No increased risk</td>
<td></td>
</tr>
<tr>
<td>Cardiac</td>
<td>3%</td>
<td>Minor (e.g. soft markers, IUGR) 24%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major / suspect (e.g. hydrops, abnormalities suggestive for trisomy) 62%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trisomy 13, 18, 21, 45XO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22q11 deletion esp with ToF (10-20%), pulmonary atresia (10%), truncus arteriosus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20-35%), interrupted aortic arch (50-60%), malalignment VSD (30%)</td>
</tr>
<tr>
<td>US abnormality</td>
<td>Risk of chromosomal abnormality if isolated</td>
<td>Risk of chromosomal abnormality if isolated other abnormalities present on ultrasound</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Abdominal wall:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omphalocele</td>
<td>25% According to gestational age: 40% at 12w; 28% at 20w; 15% at 40w Trisomy 18, 13, 21, 45X, triploidy</td>
<td></td>
</tr>
<tr>
<td>Gastrochisis</td>
<td>No increased risk</td>
<td></td>
</tr>
<tr>
<td>Gastro-intestinal:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracheo-oesophageal fistula</td>
<td>10-20% Trisomy 21 & 18,22q11</td>
<td></td>
</tr>
<tr>
<td>Duodenal atresia:</td>
<td>30-40% trisomy 21, 9</td>
<td></td>
</tr>
<tr>
<td>Jejenum / ileum atresia</td>
<td>No increased risk</td>
<td></td>
</tr>
<tr>
<td>Echogenic bowel grade III</td>
<td>zie soft markers</td>
<td></td>
</tr>
<tr>
<td>Urorenal:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUTO (lower urinary tract obstruction = posterior urethral valves)</td>
<td>12w: megacystis 7-15mm 20%; >15mm 10% 20w: 20% trisomies</td>
<td></td>
</tr>
<tr>
<td>MCKD</td>
<td>No increased risk</td>
<td></td>
</tr>
<tr>
<td>General:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrops</td>
<td>10-35% trisomy 21 & other trisomies; 45X0, triploidy</td>
<td></td>
</tr>
<tr>
<td>IUD < 28w</td>
<td>33% trisomie, 45X; tri/tetraploidy, deletion / translocation</td>
<td></td>
</tr>
<tr>
<td>Soft markers:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild ventriculomegaly</td>
<td>Likelihood ratio (LR) 7,9</td>
<td></td>
</tr>
<tr>
<td>Short femur</td>
<td>LR 2,7</td>
<td></td>
</tr>
<tr>
<td>Nuchal skin >6mm at 20w</td>
<td>LR 17</td>
<td></td>
</tr>
<tr>
<td>Echogenic bowel grade III</td>
<td>LR 6,1</td>
<td></td>
</tr>
<tr>
<td>Echogenic focus heart</td>
<td>LR 2,4</td>
<td></td>
</tr>
</tbody>
</table>